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Abstract

In many board games and other abstract games, patterns have been used as
features that can guide automated game-playing agents. Such patterns or fea-
tures often represent particular configurations of pieces, empty positions, etc.,
which may be relevant for a game’s strategies. Their use has been particularly
prevalent in the game of Go, but also many other games used as benchmarks for
AI research. In this paper, we formulate a design and efficient implementation
of spatial state-action features for general games. These are patterns that can
be trained to incentivise or disincentivise actions based on whether or not they
match variables of the state in a local area around action variables. We provide
extensive details on several design and implementation choices, with a primary
focus on achieving a high degree of generality to support a wide variety of dif-
ferent games using different board geometries or other graphs. Secondly, we
propose an efficient approach for evaluating active features for any given set of
features. In this approach, we take inspiration from heuristics used in problems
such as SAT to optimise the order in which parts of patterns are matched and
prune unnecessary evaluations. This approach is defined for a highly general
and abstract description of the problem—phrased as optimising the order in
which propositions of formulas in disjunctive normal form are evaluated—and
may therefore also be of interest to other types of problems than board games.
An empirical evaluation on 33 distinct games in the Ludii general game system
demonstrates the efficiency of this approach in comparison to a naive baseline,
as well as a baseline based on prefix trees, and demonstrates that the additional
efficiency significantly improves the playing strength of agents using the features
to guide search.
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1. Introduction

In research on machine learning for automated game-playing agents and
Artificial intelligence (AI), the focus is often on achieving state-of-the-art or
superhuman performance in one or a handful of games. In recent years, this
is often based on combinations of Monte-Carlo Tree Search (MCTS) (Kocsis &
Szepesvári, 2006; Coulom, 2007b; Browne et al., 2012) and deep neural networks
(DNNs) (LeCun et al., 2015). In principle this combination of techniques can
be successfully applied (Silver et al., 2016; Anthony et al., 2017; Silver et al.,
2017; Lorentz & Zosa IV, 2017; Silver et al., 2018; Tian et al., 2019; Morandin
et al., 2019; Wu, 2019; Cazenave et al., 2020; Cazenave, 2022) to a wide variety
of games. However, in practice the high computational requirements make it
infeasible to scale this up to large-scale studies that involve training agents for
hundreds or thousands of distinct games (Stephenson et al., 2020), in addition
to possibly many more variants of games generated automatically as possible
reconstructions of games with incomplete rules (Browne, 2018; Browne et al.,
2019b).

Another common approach for improving the playing strength of search al-
gorithms is to use higher-level features—as opposed to raw game state inputs—
which may be expected to be capable of providing useful guidance to search
algorithms without first being processed into useful representations through
multiple layers of computation as in DNNs. Such features can be used by sim-
pler, more efficient function approximators (e.g., linear functions, shallow neural
networks, etc.) (Enderton, 1991; Levinson & Snyder, 1991; Buro, 1999; van der
Werf et al., 2003; Coulom, 2007a; Gelly & Silver, 2007; Sturtevant & White,
2007; Huang et al., 2014; Lorentz & Zosa IV, 2017), or used for other purposes
such as move ordering, directly playing winning moves, directly pruning los-
ing moves, (de)prioritising other special types of moves, etc. (Stoutamire, 1991;
Müller, 1995; Cazenave, 1996; Bouzy, 2005; Bouzy & Chaslot, 2005; Stern et al.,
2006; Gelly et al., 2006; Araki et al., 2007; Raiko & Peltonen, 2008; Skowronski
et al., 2009)—without otherwise using them as inputs for parameterised func-
tions such as policy, value, or heuristic score functions. AlphaGo also used such
high-level patterns for a computationally efficient rollout policy (Silver et al.,
2016). While there are some exceptions, the majority of these approaches use
local, spatial patterns as high-level features. These are features that describe
a specific arrangement of elements (e.g. pieces, off-board indicators, empty-
position indicators, etc.) that must be present (or absent) in a specific area of
a game board (e.g., a small 3×3 patch of a larger Go board) for the feature to
be considered active in that area. The general concept of such spatial features
appears to be useful in various different games, but in each of the publications
listed above they are designed, implemented, and evaluated for a single, specific
game (most commonly Go)—often leveraging game-specific domain knowledge
for efficient designs and implementations. In addition to possibly improving the
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playing strength in many games, such spatial features or patterns are attrac-
tive because they may contribute towards human-like game-playing (Levinson
& Snyder, 1991; Mańdziuk, 2011), may facilitate generalisation and transfer
thanks to the game-independent spatial semantics, and may be easy to visu-
alise, interpret, and explain (Browne et al., 2019a).

In this paper, we focus on the design and efficient implementation of spa-
tial features for general games implemented in the Ludii general game system
(Browne et al., 2020; Piette et al., 2020). Figure 1 depicts several examples of
what such features may look like. The aim is not to achieve superhuman levels
of performance as may be expected from DNN-based approaches, but rather to
learn at least meaningful strategies that can substantially improve the playing
strength of standard (unbiased) MCTS agents across many games, with a level
of efficiency such that scaling up to many hundreds of games is feasible. To this
end, we have two core contributions:

1. We provide a significant extension of previous work in which we proposed
a design of such spatial features (Browne et al., 2019a).

2. We explore how to implement them in a way such that the activity of
features can be efficiently evaluated and used in, for instance, rollouts as
used by MCTS. The algorithm we propose for this is defined for a highly
general and abstract formulation of the problem, where we simply aim
to optimise the order in which to evaluate propositions that appear in
formulas in disjunctive normal form. This may also make it applicable to
other problem domains than games (which we discuss in Section 7).

Previous work with earlier, less extensive and optimised designs of such features
has already demonstrated the ability to train effective policies for a wide variety
of games using such features (Soemers et al., 2019, 2020).

Section 2 provides background information on Ludii and general game play-
ing, as well as a brief summary of MCTS. Related work is discussed in Section 3.
We formalise the design and format of our spatial features in Section 4, which
also includes discussions of how relevant (spatial) aspects of states and actions
are represented in the Ludii general game system. In Section 5 we propose our
approach for efficiently evaluating which spatial features out of a feature set are
active for any given state-action pair in the Ludii general game system. Section 6
describes and discusses the setup and results of our experiments. A discussion of
potential applications beyond games is provided by Section 7. Finally, Section 8
concludes the paper and explores ideas for future work.

2. Background

In this section, we provide background information on some of the basic
concepts that we build on in the remainder of the paper. We start with a
discussion of the Ludii general game system (Piette et al., 2020; Browne et al.,
2020), and how it relates to the research field of General Game Playing. We
use the vast library of games available in Ludii for experiments, and also rely
on some domain knowledge of its game, state, and move representations (Piette
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Figure 1: Three examples of local spatial features that may be useful in various games. The
leftmost feature matches actions that either complete or break a “bridge” of white pieces,
depending on which player is the player to move. The middle feature matches actions that
either complete or break a line of five black pieces. The rightmost feature matches actions
that move the bottom-left white pawn in such a way that the black pawn becomes squashed
between two white pawns.

et al., 2021a) to implement spatial features. Afterwards, we briefly describe
Monte-Carlo Tree Search.

2.1. Ludii and General Game Playing
General Game Playing (GGP) is a field of research in which the goal is to

develop agents that can play general games without human intervention (Pitrat,
1968; Świechowski et al., 2015), i.e. agents that can play any arbitrary game
without requiring any game-specific domain knowledge. Such agents typically
expect any game they are tasked with playing to have been implemented in
a specific Game Description Language (GDL)—like the Stanford GDL (Love
et al., 2008) or the game description language of Ludii (Piette et al., 2020;
Browne et al., 2020)—such that the agents can interact with any game through
a single, common API.

Game descriptions in the Stanford GDL describe the rules of games in low-
level logic, which means that many commonly-used high-level game concepts
(such as square boards, hexagonal boards, lines of pieces, slide moves, step moves,
etc.) need to be expressed from scratch in low-level logic in any new game de-
scription that requires them. Game descriptions in Ludii’s GDL are not written
in low-level logic, but instead use a significantly larger library of ludemes (i.e.,
keywords), most of which summarise such commonly-used, high-level concepts
in a single word or phrase. This design is intended to make it significantly
easier—for humans, but possibly also evolutionary algorithms (Browne, 2009)—
to write, read, and understand new game descriptions—in particular for games
that are similar to “real-world” board games and primarily use rules and equip-
ment that are already implemented as first-class citizen, and encapsulated by
appropriately-named keywords, in Ludii’s GDL. Ludii’s object-oriented game
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and state representations (Piette et al., 2020) similarly make commonly-used
concepts such as game boards, cells, vertices, edges, orthogonal and diagonal
connections, neighbours, etc. readily available for any game to any agent, which
allows for reliable implementations of spatial features, which rely on knowledge
of such concepts.

Note that a significant amount of GGP research has been inspired by the
International General Game Playing (IGGP) competition (Genesereth & Björns-
son, 2013). In this competition, agents only gain access to the game descrip-
tions of any games they play when the competition starts, leaving relatively
little time for any offline training. In this paper, we consider perhaps a less
strict idea of GGP. In principle, we do not mind “telling” an agent in advance
which games it will be expected to play, and making use of more offline training
time. However, the sheer scale of working with many hundreds or thousands
of games (Browne, 2018; Stephenson et al., 2020) does put practical limitations
on how much training time and hardware can be used for any individual game,
and makes it infeasible to program game-specific agents. This means that we
cannot, for instance, handcraft strong heuristic evaluation functions or features
for every game—not necessarily because we do not know which games we wish
to play, but because we simply wish to play too many different games for the
programming effort to be feasible. On the other hand, we can for instance
leverage the knowledge that the vast majority of games we are interested in
are “real-world” board games. Most of these involve spatial semantics; a game
board with defined positions and connectivity relations between those positions,
pieces placed on such positions, movement rules or victory conditions based on
the connectivity structure, etc. This knowledge informs our choice to focus on
spatial features.

2.2. Monte-Carlo Tree Search
Monte-Carlo Tree Search (MCTS) (Kocsis & Szepesvári, 2006; Coulom,

2007b; Browne et al., 2012) is a commonly-used tree search algorithm in GGP
(Finnsson & Björnsson, 2010; Świechowski et al., 2015), as well as several recent
state-of-the-art game-specific agents (Silver et al., 2018; Cazenave et al., 2020).
It gradually builds up a search tree in an asymmetric manner, such that it fo-
cuses a greater amount of search effort on parts of the search tree that appear
to be promising so far—based on intermediate estimates during the search—
and less effort on less promising parts of the tree. This works by iterating
through a sequence of four phases, referred to as Selection, Expansion, Simula-
tion (or Play-out), and Backpropagation, for as many iterations as allowed by
some search budget. This is depicted in Figure 2.

1. Selection: In the Selection phase, the algorithm traverses from the root of
the tree to a part of the search tree that warrants more search effort. This
is typically based on a policy that provides a balance between exploitation
of parts of the search tree that appear promising so far, and exploration of
parts of the search tree that have received relatively little attention, such
as the UCB1 policy (Auer et al., 2002).
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Figure 2: The four phases of an MCTS iteration. Source of image: (Browne et al., 2012).

2. Expansion: In the Expansion phase, the algorithm can choose to grow the
search tree. Typically this is done by adding a single new node to represent
a successor—which was previously not represented by any node—of the
final node that the Selection phase ended up in, but it is also possible
to add multiple different new nodes at once, or add no new nodes (for
instance when the Selection phase already traversed all the way to a node
that represents a terminal game state without successors).

3. Simulation: The goal of the simulation phase is to obtain an estimate
of the value of a node (or trajectory of actions) chosen by the Selection
(plus Expansion) phase. The most straightforward approach for this is to
run one or more random play-outs, where actions are selected uniformly at
random, until a terminal game state or other limit on the play-out duration
is reached, using the expanded node as starting point. This typically
results in a very noisy value estimate, but it is easy to implement, efficient
to run, and does not require any domain knowledge or offline learning.
Alternatives include running non-uniformly random play-outs based on
online (Finnsson & Björnsson, 2010) or offline (Silver et al., 2016) learning,
or replacing play-outs altogether by a trained value function estimator
(Silver et al., 2017).

4. Backpropagation: The Backpropagation phase propagates the obtained
value estimate back through the path of the tree that was traversed in this
iteration. Typically, this results in the value of a node being estimated as
the average of all value estimates that have been backpropagated through
that node, over all iterations that traversed that node.

3. Related Work

Previous work in automated discovery of useful features or heuristics for
GGP (Kuhlmann et al., 2006; Clune, 2007; Schiffel & Thielscher, 2007; Finns-
son & Björnsson, 2010; Michulke, 2011; Kirci et al., 2011; Walȩdzik & Mańdziuk,
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2011; Michulke & Schiffel, 2012, 2013; Walȩdzik & Mańdziuk, 2014) primarily
focuses on approaches that are specific to games described in the Stanford GDL
(Love et al., 2008), with its logic-based state representation. While some of
these approaches may end up learning features that could be interpreted as
being similar to the spatial features we consider, actually recognising and inter-
preting them as such first requires a human to manually analyse and interpret
how the abstract, logic-based expressions in a specific game’s description file
relate to human-understandable concepts. Furthermore, in Ludii, many such
approaches are unnecessary because spatial patterns and features can be di-
rectly implemented based on the data that is explicitly available in its game,
state, and move representations (Piette et al., 2021a). Higher-level, game-wide
features have also been proposed for Ludii (Piette et al., 2021b), but in this
paper we focus on features that can provide information about individual game
states (or individual actions within game states).

Outside of GGP, spatial patterns have frequently been used in game-specific
programs for games such as Chess (Bratko et al., 1978; Beal & Clarke, 1980;
Levinson & Snyder, 1991), Othello (Buro, 1999), Breakthrough (Skowronski
et al., 2009; Saffidine et al., 2012; Lorentz & Zosa IV, 2017), Hex (Huang et al.,
2014), and perhaps most commonly Go (Müller, 1995; Cazenave, 1996; Müller,
2002; van der Werf et al., 2003; Bouzy, 2005; Bouzy & Chaslot, 2005; Stern et al.,
2006; Gelly et al., 2006; Coulom, 2007a; Silver et al., 2007; Gelly & Silver, 2007;
Araki et al., 2007). In all of this related work, patterns are formalised and
implemented for a specific game, which means that the same formalisations are
not directly applicable to general games. For example, in the game of Go, there
are only two players (black and white), each of which only has a single piece type
(a stone), and stones are only ever placed on the intersections of a square tiling
of square cells. Therefore, in related work on patterns in Go, it is customary to
only have patterns that test for particular arrangements of empty, white, and
black positions—sometimes extended with board edge detectors and wildcards
(positions for which it does not matter whether or not, and by what, they are
occupied). For applicability to general games, our formalisation of patterns
requires support for different board structures, more diverse sets of piece types
and numbers of players, etc.

In the majority of research based on deep learning for board games in more
recent years, convolutional neural networks (CNNs) (LeCun et al., 1989) are
used (Silver et al., 2016, 2017; Anthony et al., 2017; Lorentz & Zosa IV, 2017;
Silver et al., 2018; Tian et al., 2019; Morandin et al., 2019; Wu, 2019; Cohen-
Solal, 2020; Cazenave et al., 2020; Cohen-Solal & Cazenave, 2021; Soemers et al.,
2021, 2022). These typically operate on raw, low-level state inputs, as opposed
to the higher-level features considered in this paper. However, due to the way in
which CNNs implement translation invariance and weight sharing by “sliding”
learned filters over the spatial dimensions of a state input, such learned filters
may intuitively be understood as encoding “fuzzy” versions of spatial patterns.
Note that most of this related work only uses convolutional layers at the “start”
of a neural network, but follows these up with at least one fully-connected
layer. This means that there is no translation invariance or other use of spatial
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Figure 3: The game of Fractal in Ludii. The dots mark playable sites; these are cells of a
variety of shapes.

semantics in the action-based policy outputs. This is in contrast to the spatial
state-action features considered in this paper, which specifically look at a local
area around an action in any given state. Fully-convolutional architectures
(Shelhamer et al., 2017), which have been demonstrated to facilitate transfer
learning between games with different board sizes (Soemers et al., 2021), bear a
closer resemblance in this respect. It should also be noted that CNNs normally
work best on regular tilings, such as grids of pixels or square cells, or regular
tilings containing only hexagonal cells, etc. In this paper, we aim to formalise
features independent of any single particular regular tiling, and even aim for
them to be applicable to game boards that do not have a regular tiling (see
Figure 3). Such levels of generalisation can be present in more general (graph-
based) architectures than CNNs (Bronstein et al., 2021), which have for instance
been applied to the game of Risk (Carr, 2020).

4. Formalisation of Spatial State-Action Features

In this section, we formalise our design of spatial state-action features. These
are binary features φ(s, a) of game states s and actions1 a. The basic idea is
that a feature tests for one or several conditions in the neighbourhood around
the positions involved in an action, and is either active (φ(s, a) = 1) or inactive
(φ(s, a) = 0) if the conditions are satisfied or not satisfied, respectively, for s
and a. Simple examples of conditions include testing whether there is a friendly
piece, or enemy piece, or empty position, etc., in some position relative to (e.g.,

1Throughout this paper, we follow standard reinforcement learning terminology (Sutton
& Barto, 2018), referring to the decisions of agents (or players) as actions. Within the Ludii
general game system, there is a distinction between actions and moves, with actions describ-
ing primitive modifications of game states, and moves—formed by sequences of one or more
actions—describing decisions made by players. In this paper, there is no need for any such
distinction.
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(a) Chess. (b) Go. (c) Hackenbush. (d) Triple Tangle.

Figure 4: Four different games in Ludii that use different graph element types in their rules.
Chess only involves the cells of its board. Go only involves the vertices of its board. Hacken-
bush only involves the edges of its graph. In Triple Tangle, pieces are placed on cells, vertices,
and edges.

adjacent to) the position that is the destination of an action a in a state s.
Before describing the design of these features in further detail, we discuss some
preliminaries concerning the game, state, and action representations in Ludii
(Piette et al., 2021a).

4.1. Ludii Game, State, and Action Representations
Every game’s representation in Ludii includes one or more containers, each

of which defines a “playable area” as a graph, which has vertices, edges, and—in
many cases—cells (or faces). Typically there is one primary container (often
simply representing a game’s board), and sometimes one or more additional
containers to represent supplementary areas. For instance, the game of Shogi as
modelled in Ludii has additional containers to represent “players’ hands”, which
hold captured pieces. Among all games (over 1,000) implemented in Ludii at the
time of this writing, there is not a single game with a meaningful connectivity
structure or spatial semantics within any container other than a game’s primary
board. Hence, in this paper, we only consider using spatial features within any
game’s main board. While the graphs used for many games define vertices,
edges, and cells, the vast majority of games only use one of those three types
in their rules. For example, chess only uses cells, Go only uses vertices, and the
implementation of Hackenbush in Ludii only uses edges (see Figure 4). A few
games use a combination of multiple types, such as Triple Tangle, which uses
all three types.

4.1.1. Ludii Board Geometry
Given any graph as described above, the connectivity relations between cer-

tain elements of the graphs are typically crucial for the game’s rules and its
strategies. For example, movement rules of pieces in Chess are typically defined
in terms of the connectivity relations between cells of the board, win conditions
in line-completion games such as Tic-Tac-Toe or connection games such as Hex
use similar relations to determine whether or not specific collections of cells
count as lines or connections, etc. Figure 5 provides several examples of orthog-
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onal and diagonal connections between cells, and between vertices, on square
grids.

For the features discussed in this paper, we only focus on orthogonal con-
nections. Whether or not any pair of cells or vertices are considered to be
orthogonally connected in Ludii generally closely matches human intuition, in
particular on graphs constructed from regular tilings (see Figure 5). We provide
more formal definitions as follows:

• Two cells c1 and c2 (c1 6= c2) are orthogonally connected if and only if
they share at least one edge.

• Two vertices v1 and v2 (v1 6= v2) are orthogonally connected if and only
if they share at least one edge.

We do not build in explicit support for other types of connections (Browne
et al., 2022), such as diagonal connections, in our features. This is primarily
to avoid the large increase in the space of features that could be represented.
Note that in many cases, such as square tilings, diagonal connections may still
be expressed indirectly as sequences of two orthogonal connections. Since we
are, in most cases, only interested in a single type of graph element (only cells
in Chess, only vertices in Go, etc.), we will frequently use the term “site” to
refer to one of these elements—regardless of its actual type.

In many games, rules are not only based on the connectivity structures
between sites, but also on a sense of “continuity” of connections. For instance,
a queen in Chess may follow a sequence of many connections in a single move,
but only if they all continue in the same “direction.” Ludii supports this by
automatically computing radials (Browne et al., 2022), which may intuitively
be understood as sequences of consecutive steps such that they continue in the
same direction. More formally, let s1 and s2 (s1 6= s2) denote a pair of sites,
such that there is an orthogonal step from s1 to s2. Let s3 (s3 6= s2) denote
whichever connected site of s2 has the smallest absolute change in angle between
an arrow pointing from s1 to s2, and an arrow pointing from s2 to s3. Let θ
denote this absolute change in angles. If θ < 0.25rad, we include the step
from s2 to s3 after the step from s1 to s2 in a single radial (this process may
be repeated many times for a longer radial). If θ ≥ 0.25rad, the radial does
not continue. Note that, for the computation of these angles, we assume that
every site has x- and y-coordinates that define its position. This is enforced in
Ludii, in part also to facilitate visualising games and game states in a graphical
user interface, but—especially for arbitrary graphs—these coordinates are not
necessarily guaranteed to be meaningful for gameplay. In practice, since we
focus on “real-world” games also played by humans, such coordinates often tend
to be meaningful. Figure 6 depicts an example of a full radial.

4.1.2. Ludii State Representation
While Ludii’s state representation contains many variables (Piette et al.,

2021a), the core variables that are important to understand for the purposes
of this paper are three bit arrays referred to as empty, who, and what. For
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(a) Orthogonal connections be-
tween cells.

(b) Diagonal connections be-
tween cells.

(c) Orthogonal and diagonal
connections between vertices.

Figure 5: Various types of connections on square grids.

Figure 6: Example of a radial. From the bottom to the top, a radial can be built up of
consecutive orthogonal steps with absolute changes in angle less than 0.25rad (in fact, angles
of 0rad in these cases). When the top row is reached, and there no longer exists any step in the
same direction, there is a tie for the lowest absolute change in angle between two steps—one
westwards and one eastwards. The absolute value of the change in angle ( 1

2
π) exceeds 0.25rad,

so these are not valid continuations and the radial ends.
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simplicity, we assume a game that uses only a single graph element type (only
cells, only edges, or only vertices), with P ≥ 1 different players, M ≥ 1 different
piece types, and N ≥ 1 different sites. For any give game state s, the three bit
arrays encode the following data:

• empty: A bit array of length N with, for every site 0 ≤ i < N , a value of
1 at index i if and only if site i is empty in s.

• who: A bit array of length NB, representing N consecutive chunks of B
bits each. Here, B =

⌊
2dlog2(X)e⌋, and X = blog2(P + 1) + 1c. X is the

number of bits required to encode positive integers up to and including
P + 1, and B is the lowest power of 2 that is greater than or equal to X.
Chunks are preferred to have powers of 2 as size, because that means that
a single chunk will never be split up over different 64-bit long values in
Java when the bit array is implemented as an array of long values, which
in turn is important for the implementation of efficient bitwise operators
to extract or modify chunk values. For every site 0 ≤ i < N , the bits in
the N th chunk are set such that they form the binary representation of
the integer indicating the player that occupies site i, where a value of 0
indicates a neutral piece or no occupier (empty site), and a value of P + 1
indicates occupied by a “shared” piece.

• what: A bit array of length NB, with X = blog2(M) + 1c and B defined
as above, such that it has N consecutive chunks of B bits each, where
the chunks can encode positive integers up to and including M . For every
site 0 ≤ i < N , the bits in the N th chunk are set such that they form the
binary representation of the integer indicating the piece type that occupies
site i, where a value of 0 indicates no piece (i.e., an empty site).

4.1.3. Ludii Action Representation
Like the state representations, action representations in Ludii can contain

many variables (Piette et al., 2021a). The two variables that are most important
for the purposes considered in this paper are from and to. These are typically
sites (i.e., integers 0 ≤ i < N in games with N sites), which may intuitively
be understood as the “source” (position that a piece moves away from) and
“destination” (position that a piece moves towards or is placed on), respectively.
Sometimes from and to have the same value (for instance in games such as Go,
Hex, or Tic-Tac-Toe), and sometimes they have values of −1 (for instance for
moves where players opt to pass). It is relatively uncommon, but there can be
games where multiple distinct legal actions in a single state have identical from
and to values. Such actions are aliased (i.e., impossible to distinguish) when
using a feature space that only accounts for these two variables.

4.2. Representing Relative Positions in Spatial Features
The basic premise of the spatial features φ(s, a) that we propose is that

they should encode patterns, or arrangements, where certain elements (empty
positions, stones, pawns, queens, etc.) are present or absent in locations relative
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to some particular point of interest—such as a from or to position of an action
a. When dealing with a specific game such as Chess or Go, as in much of the
related work discussed in Section 3, with a fixed and regular tiling of sites on a
board, it is straightforward to define relative positions based on offsets that are
applicable to any position on such a board.

4.2.1. Describing Relative Positions as Walks
For general games, we propose to define relative positions as walks of 0 or

more steps along orthogonal connections, where every step is represented by
a real number −1 ≤ ρ ≤ 1 that describes the ratio of a 360◦ clockwise turn
that should be taken, relative to a “current” direction, before taking the next
step. To make this easier to understand, Figure 7 provides several examples of
different walks on a grid of square cells. Cases where we know in advance that
we are dealing with a regular tiling of sites, which all have the same number
of connections, are still the easiest cases to work with. For example, all exam-
ple walks in Figure 7 use rotations that are multiples of 1

4 , since these are the
most natural rotations to use given four-sided cells that have four orthogonal
connections each. Other rotations may be more natural on other boards, such
as multiples of 1

6 for tilings of hexagonal cells (see Figure 8a). Note that con-
straining rotations ρ to a smaller range of values, such as ρ ∈ [0, 1), would still
be sufficient and equally representative. However, we sometimes find the larger
[−1, 1] range to be more convenient and easier to use when manually reading or
writing patterns for testing or development purposes.

Rotations other than these “most natural” rotations can still be used, simply
by rounding them to the closest natural rotation for any given site. If a rotation
is exactly2 in the middle of two consecutive natural rotations for a given site,
we “split up” the walk into two different walks; one for each of the rotations
we can round to. This behaviour is illustrated in Figure 8. This functionality
can be useful for transfer between games with different board geometries, and
also for games played on boards that are not regular tilings (such as Fractal;
see Figure 3). This representation is intended to preserve spatial semantics as
closely as possible even when resolving walks in situations where some of the
described rotations do not match the natural rotations of the sites involved.
For example, rotations of 0 and 1

2 will always be “opposites” of each other,
and a rotation of 1

4 (relative to a default northwards facing) will always face
approximately eastwards—regardless of whether it is evaluated on a site that has
4 orthogonal connections, or 400 or any other number of orthogonal connections.

4.2.2. Representing Off-board Space
Many game’s rules do not solely involve positions and connectivity relations

defined as an arbitrary graph, but also incorporate a sense of “direction.” As
described in Subsubsection 4.1.1, Ludii automatically computes radials, which
represent sequences of steps that follow along a single direction. However, as

2In practice we use a tolerance value of ε = 0.02.
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0

1
4

(a) Two example walks, each
consisting of a single step.

?

0

− 1
4

− 1
4

(b) A single example walk,
consisting of three steps.

?

0

0

1
2

0

(c) Two example walks, each
consisting of two steps.

Figure 7: Several example walks, describing sites relative to some starting point marked by
?, on regular tilings of sites with four orthogonal connections each (i.e., square cells). (a) A
step with ρ = 0 travels northwards, whereas a step with ρ = 1

4
travels eastwards, due to a

360◦ × 1
4

= 90◦ rotation clockwise from the “default” direction. (b) Rotations are relative
to the “current” direction. Hence, after the second step of this walk with a rotation ρ = − 1

4

already resulted in a westwards facing, an additional rotation of − 1
4
results in a southwards

step. (c) A two-step { 1
2
, 0} walk may be viewed as a vertically reflected, or a rotated (by

180◦) version of a two-step {0, 0} walk.

?

0

− 1
6

1
3

(a) Two example walks on a
grid of hexagonal cells.

?

0

− 1
4

− 1
4

(b) Example walk with two
possible destinations from ?.

?

0

1
6

1
2

− 1
3

(c) Two example walks re-
solved on square cells.

Figure 8: Several more complex example walks. (a) Because hexagonal cells have six orthog-
onal connections each, rotations are most naturally expressed as multiples of 1

6
. (b) If a walk

has a step with a rotation of − 1
4
on a grid of hexagonal cells, this can be interpreted as either

− 1
6
or − 1

3
, because it is perfectly in the middle of those two values. Hence, a single walk can

“split” into two different walks (depicted with dashed arrows), and it can represent either of
the two destinations as position relative to ?. (c) On a grid of square cells, rotations of (−) 1

6

and (−) 1
3
both resolve to the same closest “natural” rotation of (−) 1

4
.
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depicted in Figure 6, these radials stop when the border of a game board is
reached. This also leads to the issue that, for example, all the sites along the
border of a square tiling only have three orthogonal connections (or two for the
corners), whereas inner sites have four connections. Arguably a more natural
representation would introduce additional connections leading to “off-board”
positions, such that we can detect at what point of a walk a step in a certain
direction would cause us to wander “off the board.” While it may be considered
obvious where such additional connections would have to be added for certain
specific cases, such as regular square tilings, this is not always true for more
unconventional boards, or arbitrary graphs, which may also be used in Ludii.
To support more general cases, we propose a series of steps to automatically
compute such off-board connections, based on “extending” existing radials past
their stopping point. While we cannot guarantee that this produces the expected
result in any arbitrary case (or even just formally define what the expected result
would be in any arbitrary case), we can demonstrate the results for a variety of
common cases.

1. Completing triangles. Whenever a site has only two outgoing radials that
start with an orthogonal step, with an angle of 2π

3 between them, we insert an
additional off-board step at another 2π

3 angle. This “completes” triangular cells
along a board edge, as depicted in Figure 9.

2. Continuing opposite radials. Let s1 denote a site with an orthogonal step
to another site s2, such that s2 has a radial back to s1 that does not extend
beyond s1. In such a case, we insert an artificial off-board connection from s1, in
the same direction that the step from s2 to s1 points to. This handles common
cases such as sites along the edge of a chessboard or Go board, as depicted in
Figure 10. This step is skipped if the previous step (for completing triangles)
already introduced new connections.

3. Encouraging uniform angles. While it is possible to play games on arbi-
trary graphs with arbitrary structures, the vast majority of games use regular
or semiregular tilings with regular polygons. Hence, as a heuristic, we prefer
uniform angles between all outgoing radials starting with orthogonal steps for
any single given site. For any site to which some artificial connections were al-
ready added in the previous step, we introduce additional ones if this can ensure
that the angles between any pair of adjacent connections becomes equal (not
allowing the total number of connections to be more than doubled). Figure 11
depicts, as an example, how this affects two of the corners of a rhombus-shaped
board of hexagonal cells, as used in the game of Hex.

Walks into off-board space. Using the additional off-board connections as de-
scribed above, we can detect when a walk wanders off the board. However, be-
yond those steps, the “off-board” space is not further modelled with additional
sites and connections. This means that, once a walk wanders off the board, it
can never return; the final destination of such a walk is always assumed to be
an “off-board” position.
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2π
3

2π
3

2π
3

Figure 9: The solid blue arrows represent two radials that each start with an orthogonal
step, originating from the same cell. There is an angle of 2π

3
rad between them. We insert

an artificial “off-board” connection, represented by the green dashed arrow, to complete the
circle.

Figure 10: The solid blue arrows represent radials for orthogonal steps on a 6×6 Go board (as-
suming play on the intersections). The dashed green arrows represent off-board continuations
of these radials.
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Figure 11: The solid blue arrows represent radials, plus two off-board continuation steps, for
the rightmost cell. The dashed green arrows represent two additional off-board connections
added to ensure uniform angles between adjacent connections.

4.3. Representing Actions and State Elements in Spatial Features
A spatial state-action feature φ(s, a) must encode relevant (spatial) aspects

of the action a, as well as some elements that must be present or absent in the
game state s, typically in a local area around the sites affected by a, for the
feature to be considered active. For every such feature, we leave one variable
site referred to as the anchor, denoted ?. Any other aspects are defined relative
to ? using walks, as explained in Subsection 4.2. Firstly, we define the following
four action-related properties, for which any feature φ(s, a) can specify that they
must be present in positions i relative to an anchor ? for φ(s, a) to be considered
active:

• to: Requires that the to position of action a coincides with the position
i relative to ?.

• from: Requires that the from position of action a coincides with the po-
sition i relative to ?.

• last to: Requires that the to position of the last action a′, which led to
s, coincides with the position i relative to ?.

• last from: Requires that the from position of the last action a′, which
led to s, coincides with the position i relative to ?.

Any state-action feature φ(s, a) must have at least a specifier for either to or
from—because otherwise it would simply be a state feature φ(s) that could
not distinguish between any actions—and it can have specifiers for both. If a
feature has specifiers for either last to or last from (or both), we refer to
it as a reactive feature. Reactive features are generally more efficient to use
because they only need to be evaluated in a local area around the last action,
which they “react” to.

Secondly, we define several state properties, for which any feature φ(s, a) can
specify that they must be present or absent in positions i relative to an anchor
? for φ(s, a) to be considered active. Note that for each of these, we consider
affirmative as well as negated variants:
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• empty: Requires that the position i relative to ? is (not) empty, i.e. the
ith bit in the empty bit array of s must (not) be set to 1.

• friend: Requires that the position i relative to ? is (not) occupied by a
friendly piece, i.e. the bits in the ith chunk of the who bit array of s must
(not) represent the integer value p, where p is the player to move.

• enemy: Requires that the position i relative to ? is (not) occupied by an
enemy piece, i.e. the bits in the ith chunk of the who bit array of s must
(not) represent an integer value other than 0 or p, where p is the player
to move.

• off: Requires that the walk specifying i, relative to ?, leads to a position
that is (not) “off the board” (see Subsubsection 4.2.2).

• item: Requires that the position i relative to ? is (not) occupied by a
specific piece type with a specified index k, i.e. the bits in the ith chunk
of the what bit array of s must (not) represent the integer value k.

• connectivity: Requires that the position i relative to ? is (not) a site
that has a specified number k of orthogonal connections.

• region proximity: Requires that the position i relative to ? is (not)
closer than ? to the region defined in the game with a specified index k.
Regions are predefined sets of sites that typically have a specific, important
meaning in a game’s rules (e.g., a region of sites that a player must reach
or to win).

Note that these state and action properties are not necessarily sufficient to
perfectly distinguish all unique states and actions in all games; in some games,
there may be pairs of distinct states s and s′, or distinct actions a and a′ that
will always be indistinguishable based on only these properties. The choice to in-
clude these properties in the representation and no others is a subjective choice.
This is primarily based on our intuition of which properties permit efficient eval-
uations of features, are relevant and important to include in some games, and
also generally applicable to the extent that they are not only relevant in a small,
highly specific selection of games. For most of these properties, analogous prop-
erties are also frequently included in related work on game-specific patterns
(see Section 3). Similarly, approaches based on deep learning with convolu-
tional neural networks frequently use channels encoding similar data, such as
binary channels indicating presence or absence per piece type (Silver et al., 2018;
Cazenave et al., 2020; Soemers et al., 2022). An example of a more advanced
property that we considered is a “line-of-sight” property, which tests whether
or not a position is in line of sight—without other obstructions in between—of
a particular player or piece type. Including features with such properties was
found to require an excessively large amount of memory in preliminary testing.
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4.4. Exploiting Symmetries in Features
A common approach to improve sample efficiency and training speed in AI

for games, as well as machine learning more generally, is to exploit various sym-
metries through weight sharing. For example, a significant amount of related
work on patterns in games such as Go uses translational weight sharing; the same
weight is associated with a pattern, regardless of where it appears on the game
board. Other forms of symmetry that are frequently leveraged include reflec-
tion, rotation, and player colour inversion (Stern et al., 2006; Gelly et al., 2006;
Gelly & Silver, 2007; Silver et al., 2016, 2017; Lorentz & Zosa IV, 2017). Out-
side of game AI applications, CNNs (LeCun et al., 1989)—which are ubiquitous
in deep learning approaches for machine learning problems with image-based
inputs—implement weight-sharing through translation equivariance. Other ar-
chitectures have been developed to exploit additional symmetries in various
domains (Koriche et al., 2017; Bronstein et al., 2021; Cohen, 2021).

Many of these symmetries are not necessarily perfectly applicable to all
games. Consider, for example, a simple feature that tests for moves that cap-
ture a queen in chess. Capturing the opponent’s queen may be more or less
valuable depending on which position it is located in, which suggests that such
a feature have different weights for different anchor positions. On the other
hand, it is likely that—even if the exact position may be relevant—capturing
the opponent’s queen will in general be likely to be a valuable move, which sug-
gests that training can be sped up significantly by sharing the same weight for
such a feature regardless of the exact position of the anchor when it is active.

In this work, we share the same weight across all translations (distinct anchor
positions), rotations, and reflections per feature. This improves generalisation
and computational efficiency, possibly at a cost in representational capacity.
We discuss three examples of well-known games where we know some of these
symmetries to be “incorrect”, and ways in which negative effects on the rep-
resentational capacity of policies based on our features are mitigated in these
games:

1. In the game of Breakthrough (see Figure 12a), players are only allowed
to moves their pawns “forwards” (diagonally or orthogonally), towards the
board edge opposite their starting positions. This suggests that patterns
that are representative of strong or weak situations likely no longer rep-
resent the same after rotation or vertical reflection—except if the player
colours also were to be inverted. However, our state-action features φ(s, a)
also encode a representation of the action a, and they need only be eval-
uated for legal actions a. Because such rotations or vertical reflections
would only be applicable to illegal actions, this form of weight-sharing is
harmless (as well as useless) in this situation.

2. In the game of Reversi (see Figure 12b), it is well known that the corners
of the board are particularly important to control. This suggests that
some patterns may be more or less important depending on whether or
not they are close to a corner, and translational weight sharing may not be
appropriate. However, we include the ability to detect off-board positions
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(a) Breakthrough. (b) Reversi. (c) Hex.

Figure 12: Three examples games where certain symmetries may not be applicable.

relative to the anchor, and such elements can be used by features φ(s, a) to
ensure that φ(s, a) = 1 only if the anchor is in a particular offset relative
to any corner—still allowing for generalisation between different corners
through combinations of translation and rotation or reflection.

3. In the game of Hex (see Figure 12c), one player aims to connect the north-
east and southwest sides of the board, whereas the other player aims to
connect the northwest and southeast sides of the board. This means that
for each player, there is generally one axis along which it is significantly
more valuable to extend a connection than the other axis, which means
that weight sharing across some rotations may be less sensible than oth-
ers (Huang et al., 2014). However, each of the pairs of sides per player
is defined as a region in the game’s description in Ludii. Therefore, the
inclusion of elements that test for proximity to either of these regions in
certain positions relative to the anchor can ensure that a feature can or
cannot be active under certain rotations.

In games such as Go, it is also common to leverage symmetry under colour
inversion; for example, training datasets can be augmented by generating addi-
tional sample states where all black stones are changed to white stones, white
stones changed to black stones, and training labels (such as the outcomes of
games) similarly inverted. We do not consider any generalisation of this form
in this paper, instead opting to train sets of features and weights separately
for every player’s perspective. One reason for this is that we also aim to train
policies for games with n > 2 players, for which it is not immediately clear how
colour inversion should work. Another reason is that, even among two-player
games, there is a significant number with a high degree of asymmetry, such as
many hunt games (Murray, 1951), Tablut (Linnæus, 1732), and Jeu Militaire
(Lucas, 1887); see Figure 13. In these games, two opposing players can have dif-
ferent piece types, different move rules, different initial setups, different victory
conditions, etc.
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(a) Asalto. (b) Tablut. (c) Jeu Militaire.

Figure 13: Three examples of highly asymmetric games.

4.5. Examples of Complete Features
Figure 14 depicts visualisations of four examples of complete features that

could be modelled using the design described in this section. In the first three
subfigures, a green star is used to represent both the anchor and the to posi-
tion. In the final subfigure, a green arrow represents the from and to positions,
of which one is customarily used as anchor. Internally, positions of all other
elements are represented by walks relative to anchors, as described previously,
but explicit visualisations of these walks are omitted to improve visual clarity.
Figure 14a is a feature that matches actions placing a piece in between two
existing white pieces along an orthogonal axis. This can be used to recom-
mend players to make a winning move (if they are the white player), or block
a winning move for the opponent (if they are the black player) in Tic-Tac-Toe.
Figure 14b shows a similar feature, except for diagonal rather than orthogonal
lines of pieces. Depending on the perspective, Figure 14c can be used to incen-
tivise either completing a bridge of white pieces, or breaking one. This is an
important tactic in connection games such as Hex (Browne, 2000, 2005). Finally,
Figure 14d recommends a diagonal movement to capture a black pawn, starting
from a position that does not have a white pawn to protect it on either of the
diagonal cells below it. Such a pattern is particularly useful for games such as
Breakthrough (in which pawns that capture diagonally are the only piece type),
but may also have some value in games with more varied piece types like Chess.

5. Efficiently Evaluating Spatial State-Action Features

When using state-action features φ(s, a) to guide an MCTS process, it is
important that the activity level of such features for any relevant state-action
pair (s, a) can be computed efficiently. If this is not efficient, the computa-
tional overhead may reduce the number of iterations that can be run within any
given time budget too much, which may in turn reduce the playing strength
relative to an unguided, more efficient search. Efficiency is particularly impor-
tant for the play-out phase, where—for the sake of efficiency—it is common to
use fewer, smaller, or otherwise more efficient features or policies (Gelly et al.,
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Figure 14: Four visualisations of examples of complete state-action features.

2006; Coulom, 2007a; Silver et al., 2016) than in the selection phase. Neverthe-
less, also in the selection phase it is naturally advantageous if features can be
computed efficiently.

One common approach in computer Go is to directly index into a table, using
variants of Zobrist hashing (Zobrist, 1970), to retrieve active patterns for any
given state s and position corresponding to an action a. Such an approach only
works when, for any considered pattern size, only all complete patterns—without
any “wildcard” or “do-not-care” elements or positions—are used (Fotland, 1993;
Stern et al., 2006; Silver et al., 2007; Gelly & Silver, 2007; Araki et al., 2007). For
example, in Go this approach can be used if all patterns of a given size, such as
3×3, fully specify every position within that area as being either empty, black,
white, or off-board. With our feature formalisation, applicable to arbitrarily-
shaped graphs, this is impossible to guarantee. Furthermore, for games with
many more piece types than just the two of Go, such as Chess with twelve piece
types (six per player), the number of unique, fully-specified patterns that could
be enumerated—even for a small area such as 3×3—would be excessively large.

The second common approach for evaluating patterns in computer Go is to
store patterns to be evaluated in data structures that account for generalisation
relations between patterns, and avoid matching patterns that can already be
inferred to not be a match based on evaluations of other patterns. Consider,
for example, the three patterns for Go depicted in Figure 15. All three patterns
share the same requirement for a black stone above the centre, and the last two
also share the same requirement for the centre to be empty; the first pattern
generalises the last two, and the second also generalises the last. In any situation
where the first pattern does not match, the last two need not be evaluated
because they will for sure also not match. Similarly, the third pattern can be
skipped if the second pattern does not match. This is typically implemented
by storing patterns in tree structures (Levinson & Snyder, 1991; Müller, 1991,
1995)—such as prefix trees, where more general patterns are “prefixes” of more
specific patterns—or deterministic finite state automata (Urvoy & gnugo team,
2002). The approach we propose in this section bears some resemblance to these
ideas, but includes additional optimisations.
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(a) This pattern generalises b
and c.

(b) This pattern is generalised
by a, but generalises c.

(c) This pattern is generalised
by a and b.

Figure 15: Three example patterns for Go in 3×3 windows. Small squares denote positions
that must be empty for the pattern to match, whereas any other empty positions are wildcard
positions, the contents of which are irrelevant to pattern matching.

5.1. Instantiating Features
Let Φ = {φ0, φ1, . . . , φn} denote a feature set of n spatial features φi, as

formalised in Section 4, for some arbitrary game. We aim to efficiently com-
pute binary feature vectors φ(s, a) =

[
φ0(s, a) φ1(s, a) . . . φn(s, a)

]
for any

state-action pair (s, a). For every unique possible anchor position ? in the given
game, we instantiate every feature φi ∈ Φ by resolving all walks in φi from
?. After resolving the walks, we know the specific positions for which φi has
requirements relative to the anchor ?. This process of instantiating the feature
is repeated for all rotations and reflections, where ? is assumed to represent the
origin, and the number of orthogonal connections from ? determines the number
of rotations to consider. Note that feature instantiations are specific to a single
player’s perspective, because the meaning of “friend” or “enemy” is different for
different players. For notational brevity, we leave the dependence on a specific
player p implicit; there is no ambiguity because the player for whom features
φ(s, a) are evaluated is always the player that can select the action a in the state
s.

Recall that every feature φi must specify a walk for at least an action’s from
or to position, and it can specify walks for both. When we wish to compute
which features are active for a state-action pair (s, a), the anchors for which
any instantiations were generated are irrelevant; rather, we require the ability
to find any instantiations for which any specified from or to walks match the
action a. Hence, we store instantiations in maps that can be accessed quickly
with hash keys generated from the player index p, as well as any mix of to,
from, last to, and last from indices. Keys including either (or both) of the
last two are used to allow for fast retrieval of relevant instantiations of reactive
features for any state-action pair (s, a).

Let F(s, a) = {f0, f1, . . . , fk} denote such a set of feature instantiations that
can be relevant to the state-action pair (s, a) according to the action-related
properties. Any requirements that features may have for off, connectivity,
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or region proximity elements can already be evaluated at instantiation time;
instantiations with conditions that are violated can already be removed, and
for the remaining instantiations these conditions need no longer be checked at
runtime. This leaves only empty, friend, enemy, and item conditions to be
evaluated at runtime; these can all be implemented as simple tests involving
the empty, who, and what bit arrays of a game state s. Algorithm 1 provides
pseudocode for a simple, naive algorithm to evaluate which features are active
for any given state-action pair (s, a) from such a set of instantiations. It simply
evaluates all the conditions of every feature instantiation in sequence, which is
straightforward to implement, but slow because it does not leverage any overlap
in conditions or other relationships between multiple instantiations.

Algorithm 1 Naive evaluation of active features.
Require: Set of relevant feature instantiations F(s, a) = {f0, f1, . . . , fk}.
1: φ← 0 // Init. to zero vector.
2: for each feature instantiation fi ∈ F(s, a) do // Test whether fi is a

match.
3: match ← true
4: for each condition c of fi do
5: if (s, a) violates c then
6: match ← false
7: break
8: end if
9: end for

10: if match then
11: j ← feature index of which fi is an instantiation
12: φ [j]← 1
13: end if
14: end for
15: return feature vector φ

5.2. Features as Disjunctions of Conjunctions
As a first step towards a more efficient approach for computing feature vec-

tors from a set of relevant instantiations F(s, a), we discuss how every feature
(represented by one or more feature instantiations) may be represented as a
disjunction of conjunctions of propositions (i.e., a logical formula in disjunctive
normal form).

Let f ∈ F(s, a) denote any arbitrary feature instantiation in the set. Let
φ(f) denote the original feature of which f is an instantiation. Let Φ(s, a) =
{φ(f) | f ∈ F(s, a)} denote the set of all features for which there exists at least
one instantiation in F(s, a). Let C(f) = {c1, c2, . . . , ck} denote a set of k ≥ 0
conditions, or propositions, that must hold in the state-action pair (s, a) for
the feature instantiation f to be considered active. We may view every such
condition ci = 〈site, bit array, value, negated〉 as a four-tuple specifying:
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– – – – – –

Figure 16: Six different instantiations, each with the same position (centre of the depicted
area) as anchor, of a single feature that requires the anchor to be empty (indicated by “–”),
and an adjacent position to contain a white stone. This means that every instantiation is a
conjunction of two conditions, where the condition for the empty position is identical for each
of the instantiations. The feature is a disjunction of these six conjunctions.

1. The site for which we have a condition.
2. The bit array (empty, who, or what) in which we look for a specific value.
3. The value that we check for in the specific site, mapping to a chunk, of

the specific bit array.
4. Whether or not the condition should be negated; if true, the condition is

satisfied if and only if the specified value is not found in the bit array.

A feature φ is considered active if and only if there exists at least one active
instantiation: φ(s, a) = 1⇔ ∃f∈F(s,a)

(
φ = φ(f) ∧ ∀c∈C(f) [(s, a) satisfies c]

)
.

Since a feature instantiation is considered active if and only if all of its
conditions are satisfied, it can be represented simply as a conjunction of its
conditions: C = c1 ∧ c2 ∧ · · · ∧ ck. Since a feature only requires any one of its
instantiations to be active for the feature to be considered active, the feature can
be represented as a disjunction of several such conjunctions: D = (ci ∧ . . . cj)∨
· · · ∨ (ck ∧ · · · ∧ cl). See Figure 16 for an example.

We say that a conjunction (or feature instantiation) Ci generalises another
conjunction Cj if and only if Cj contains all (and possibly more) conditions
that Ci contains. In such a case, we have ¬Ci ⇒ ¬Cj , i.e. Cj will for sure
not be satisfied if Ci is not satisfied. We say that a disjunction (or feature) Di

generalises another disjunction Dj if and only if Dj has at least one non-empty
conjunction, and for every conjunction Cj in Dj , there exists a conjunction Ci
in Di such that Ci generalises Cj . In such a case, we have ¬Di ⇒ ¬Dj , i.e. Dj

will for sure not be satisfied if Di is not satisfied. These relationships are one
aspect that we will take into consideration when determining the order in which
to evaluate propositions.

5.3. Implications Between Propositions Based on Domain Knowledge
In addition to the domain-independent knowledge about generalisation rela-

tionships discussed above, we can leverage domain knowledge about implications
between different propositions to further optimise the evaluation of features. In
this subsection, we simply present the domain knowledge that is available. The
way in which this is used is discussed afterwards. Note that in this case, “domain
knowledge” refers to domain knowledge about the game state representations
across all of Ludii (Piette et al., 2021a); this domain knowledge still generalises
across many hundreds of games as they are modelled in Ludii.
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Proposition a Propositions proven by a

x is empty x is empty
x is not owned by player p (for any player p > 0)
x is not piece i (for any i > 0)

x is not empty x is not empty
x is owned by player p x is owned by player p

x is not piece i (for any i not owned by p)
x is piece i (if i is the sole type owned by p)
x is not empty

x is not owned by player p x is not owned by player p
x is not piece i (for any i owned by p)

x is piece i x is piece i
x is not empty
x is not piece j (for any j 6= i)
x is owned by player p (where p is the owner of i)
x is not owned by player p (for any p that does not own i)

x is not piece i x is not piece i
x is not owned by player p (if i is the sole type owned by p)

Table 1: The left column lists propositions a that may be conditions of feature instantiations,
where x always refers to a specific site. The right column lists propositions that can be proven
by a; these can be automatically inferred to be true, without evaluating, whenever a has been
evaluated to true.

The left column of Table 1 lists various propositions that feature instan-
tiations may test for, and the right column lists other propositions that are
automatically proven to be true whenever the matching propositions from the
left column evaluate to true. For example, whenever a proposition that requires
a site x to be empty evaluates to true, we can directly infer that that same
position x is not owned by player 1 (or player 2 or any other player p > 0),
that it is not occupied by a piece of type 1 (or type 2 or any other piece type
i > 0), etc. Similarly, the negations of all the propositions in the right column
can immediately be disproven whenever the matching propositions from the left
column evaluate to true. Whenever a proposition a from the left column eval-
uates to false, it proves and disproves the propositions that correspond to the
negation of a.

5.4. Organising Instantiations and Propositions in Spatial Pattern Networks
Let F(s, a) denote a set of relevant feature instantiations for any arbitrary

state-action pair (s, a), Φ(s, a) = {φ(f) | f ∈ F(s, a)} a set of features with
at least one relevant instantiation, and P(s, a) =

⋃
{C(f) | f ∈ F(s, a)} a set

containing all the propositions (or conditions) of all feature instantiations. The
naive approach presented in Algorithm 1 would evaluate every proposition in
P(s, a) at least once—and possibly many of them multiple times—to compute
a feature vector φ(s, a). We aim to construct a more efficient algorithm that:
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1. Never evaluates the same proposition more than once.
2. Does not evaluate a feature instantiation f if its feature φ(f) is already

known to be active (due to a different instantiation f ′ with φ(f ′) = φ(f)
already having been proven to be active).

3. Does not evaluate a proposition c for a feature instantiation f if there
exists another instantiation f ′ such that f is generalised by f ′ (see Sub-
section 5.2), f ′ still needs to be evaluated (taking into account the previous
point), and f ′ does not have c as a condition.

4. Leverages implications between propositions based on domain knowledge
(see Subsection 5.3) to keep track of propositions that can be proven or
disproven, without actually evaluating them.

To this end, we propose the algorithm described in Algorithm 2, where it
is assumed that a total ordering of all propositions in P(s, a), as well as total
ordering of all feature instantiations in F(s, a), has already been computed. The
way in which we compute these orderings is addressed in the next subsection.
Furthermore, we assume that a vector φinit has already been precomputed,
such that it contains entries of 1 for any features that can be guaranteed to
be active irrespective of the game state s; these are features with at least one
instantiation for which all conditions can already be satisfied at instantiation
time. We assume that any feature instantiations for such features have also
already been removed from F(s, a), since they are no longer necessary.

The basic premise of Algorithm 2 is that the active_inst bit array tracks
feature instantiations that should still be (partially) evaluated, and active_props
tracks which propositions have not yet been evaluated. At first, we assume that
all instantiations should be evaluated, and do so in the order in which they have
been sorted. Evaluating a feature instantiation is done by evaluating all of its
propositions. As propositions and feature instantiations are evaluated, others
may also already be deactivated (by assigning values of 0 in their respective bit
arrays) and hence pruned. This is done by the Deduce() function described
in Algorithm 3. Note that each of the loops that sets entries in bit arrays to
0 in this algorithm can be implemented to run at least partially in parallel by
implementing them as bitwise AndNot operations.

Intuitively, this approach may be viewed as organising the feature instanti-
ations and propositions into a network, with a variety of relationships between
propositions and instantiations. See Figure 17 for an example. Feature instan-
tiations are evaluated by traversing the network in a fixed order; in the example
figure, going from top-left to top-right to bottom-left to bottom-right. When a
proposition evaluates to false, it can immediately deactivate any other complete
feature instantiations that include the same proposition. When a feature in-
stantiation evaluates to true, it can immediately deactivate any other complete
feature instantiations that represent the same feature. Finally, when a propo-
sition evaluates to true or false, it can prove or disprove other propositions or
instantiations according to Table 1 (not included in the example figure). We
refer to such a network as a Spatial Pattern Network (SPatterNet). We use a
representation based on bit arrays and other primitive tables, rather than an ex-
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Algorithm 2 Proposed algorithm for evaluation of active features.
Require: Feature instantiations F(s, a) represented as totally ordered list.
Require: Propositions P(s, a) represented as totally ordered list.
1: φ← φinit
2: active_props ← 1|P(s,a)| // Bit array filled with 1 entries for every

proposition.
3: active_inst ← 1|F(s,a)| // Bit array filled with 1 entries for every

instantiation.
4: for each set bit i in active_inst do // Evaluate ith instantiation.
5: for each proposition c of the ith feature instantiation do
6: if active_props[c] = 0 then
7: continue // c has already been evaluated to true, so move on.
8: end if
9: active_props[c] ← 0

10: if s violates c then // Condition not satisfied.
11: Deduce(active_props, active_inst, ¬c)
12: continue outer loop through active_inst
13: else // s satisfies c
14: Deduce(active_props, active_inst, c)
15: end if
16: end for
17: j ← feature index corresponding to the ith feature instantiation
18: φ [j]← 1 // This feature has been proven to be active.
19: for each other instantiation f of the same feature with index j do
20: active_inst[f] ← 0 // Feature already active, so skip other

instantiations.
21: end for
22: end for
23: return feature vector φ

Algorithm 3 Deduce() function that makes deductions after evaluating a
proposition.
Require: Bit array active_props of propositions that we may deactivate.
Require: Bit array active_inst of instantiations that we may deactivate.
Require: Proposition c that has been evaluated to true.
1: for each proposition c′ such that c⇒ c′ do
2: active_props[c′] ← 0 // c′ already proven to be true.
3: end for
4: for each proposition c′ such that c⇒ ¬c′ do
5: for each instantiation f such that f requires c′ do
6: active_inst[f] ← 0 // c′, and hence f , already disproven.
7: end for
8: end for
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A B C D
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Figure 17: A network representation of features, feature instantiations, and propositions.
Circles represent propositions, labelled with letters A, B, C, D. Coloured boxes represent
feature instantiations—conjunctions of the propositions they surround. Instantiations are
labelled and coloured according to the feature they represent. In this example, there are two
features—φ0 and φ1—with two instantiations each. A solid arrow from a proposition to an
instantiation indicates that, if the proposition evaluates to false, the instantiation it points to
is also disproven (in addition to the instantiation that the proposition is a part of itself). A
dashed arrow from an instantiation f to another instantiation f ′ indicates that, if f is active,
f ′ no longer needs to be evaluated.

plicit network representation, for improved performance. This is similar to how
efficient implementations of Propositional Networks for GDL-based GGP (Cox
et al., 2009; Schkufza et al., 2008) use table-based internal state representations
(Draper, 2014).

5.5. Ordering Propositions and Instantiations
Given a set of relevant feature instantiations F(s, a), we aim to order feature

instantiations and propositions in such a way that, in expectation, the number
of evaluations of propositions required by Algorithm 2 for any arbitrary state-
action pair (s, a) is minimised. The effectiveness of different pruning strategies
(based on generalisation relationships between instantiations, different instan-
tiations representing the same feature, and propositions proving or disproving
other propositions) can be affected by these orderings in different ways. Hence,
we start by considering only generalisation relationships between feature in-
stantiations, and afterwards build on the resulting approach for ordering by
incrementally taking into account the other strategies.

5.5.1. Ordering Based on Generalisation Relationships
Let f ∈ F(s, a) and f ′ ∈ F(s, a) denote two different feature instantiations

such that f ′ is generalised by f (i.e., f ′ is a conjunction of all propositions of
f , plus at least one more). In such a case, f should always be fully evaluated
before f ′. This creates a trivial partial ordering of instantiations, where more
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general instantiations are always evaluated before more specific instantiations.
An arbitrary ordering can be used between any pair of instantiations for which
there exists no generalisation relationship.

5.5.2. Ordering Instantiations Based on Shared Features
Let f ∈ F(s, a) and f ′ ∈ F(s, a) denote two different feature instantiations

such that both instantiations represent the same feature, i.e., φ(f) = φ(f ′).
When either one of these instantiations evaluates to true, evaluation of the
other can be skipped entirely, because the feature is already known to be ac-
tive. Intuitively, this suggests that “shorter” instantiations (conjunctions of
fewer propositions) should be ordered and evaluated before “longer” instantia-
tions of the same feature. This intuition can easily be combined with the rule
described above that more general instantiations should be evaluated before
more specific instantiations. There are no conflicts between these two ideas,
since a more general instantiation is also always shorter than a more specific
instantiation. However, this intuition does not account for the observation that
when a single proposition evaluates to false, this can immediately disprove any
complete instantiation that it is a part of—including potentially many large or
highly-generalised instantiations that would otherwise be deprioritised. This
insight suggests that it may be useful to order individual propositions, rather
than complete instantiations (conjunctions), and to prioritise propositions that
appear in short conjunctions as well as propositions that appear in many con-
junctions. These two criteria may conflict.

A similar conflict between two such heuristics commonly appears in boolean
satisfiability (SAT) problems, in which the goal is to determine for any given
propositional formula in conjunctive normal form, whether there exists an as-
signment of truth values to all variables such that the formula is true. Typical
approaches for SAT problems use a backtracking search through the space of
all possible assignments of truth values to variables (Davis & Putnam, 1960;
Davis et al., 1962). In such a backtracking search, it is typically desirable to
prioritise assigning truth values to the most constrained variables, because those
are often the most likely to lead to unsatisfiable clauses—which allows for early
backtracking. A popular set of heuristics are the Maximum Occurrences in
clauses of Minimum Size (MOMS) heuristics (Pretolani, 1993), which prioritise
variables that occur frequently, as well as variables that occur in small clauses
(disjunctions). We take inspiration from these heuristics in our approach.

We propose an approach that orders propositions by iteratively picking
propositions, sorting them in the order in which they are picked, keeping the
following principles in mind:

1. If a disjunction (feature; disjunction of conjunctions of propositions) is
not generalised by any other disjunctions, it must be evaluated.

2. If a disjunction must be evaluated, at least one of its conjunctions must
be evaluated (repeated until either one conjunction evaluates to true, or
all conjunctions evaluate to false).
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3. If a conjunction must be evaluated, at least one of its propositions must
be evaluated (repeated until either all its propositions evaluate to true, or
one proposition evaluates to false).

Based on the first principle, we start out by splitting the set of all disjunctions
(features) in two sets: a set U0 of ungeneralised disjunctions, and a set G0 of
generalised disjunctions. For every ungeneralised disjunction D ∈ U0, there ex-
ists no other disjunction D′ ∈ U0 ∪ G0 such that D′ generalises D. For every
generalised disjunction D ∈ G0, there exists at least one ungeneralised disjunc-
tion D′ ∈ U0 such that D′ generalises D. For ease of reference, we list these and
several other definitions of symbols in Table 2.

The second and third principles suggest that we should start out by picking
a set of propositions such that at least one proposition from at least one con-
junction from every ungeneralised disjunction D ∈ U0 is picked.3 We partition
the ungeneralised disjunctions U0 into subsets U1

0 ,U2
0 , . . . , such that U i0 is the

subset of all disjunctions that contain i conjunctions. As a special case, we start
by immediately picking all propositions for conjunctions of length 1 in disjunc-
tions of length 1 (i.e., disjunctions in U1

0 ). Afterwards, we loop through all U i0
in increasing order of i, every time looping through the remaining uncovered
disjunctions (in an arbitrary order) and picking a single proposition to cover
that disjunction. Let D ∈ U i0 denote such a disjunction that we need to pick
a proposition from. Let C(D) denote its set of conjunctions, C ∈ C(D) one
of the conjunctions, and c ∈ C one of the propositions of such a conjunction.
With some abuse of notation, we use c ∈ C(D)—with a lowercase c—to denote
a proposition from any one of the conjunctions in C(D). Let P denote the set
of propositions that have already been picked. Let |C| denote the length (i.e.,
number of propositions) of a conjunction C. Let Ω denote a set of all conjunc-
tions C ′ such that C ′ is a part of some disjunction D′ ∈ U i0 where D′ is not
covered by any of the propositions picked so far in P . Let Ωc = {C ∈ Ω | c ∈ C}
denote the subset of conjunctions in Ω that contain c as one of their proposi-
tions. Then, we pick the proposition c∗ ∈ C(D) given by Equation 1, which is
based on the Jeroslow-Wang heuristic for SAT (Jeroslow & Wang, 1990):

c∗ = argmax
c∈C(D)

∑
C′∈Ωc

2−|C
′| (1)

Intuitively, this heuristic simply increases the score of a proposition for ev-
ery conjunction that includes that proposition, while ignoring conjunctions from
disjunctions that are already covered by any of the previously-picked proposi-
tions P . The exponent in the 2−|C

′| term favours propositions that appear in
short conjunctions C ′ over propositions that appear in long conjunctions C ′.

3Picking a minimal set of such propositions would be equivalent to the hitting set problem,
or set cover problem, which is NP-complete (Karp, 1972). A common and simple heuristic in
greedy algorithms to generate approximate solutions (Chvatal, 1979) would translate to our
setting as a heuristic that would prioritise propositions that appear in a maximal number of
disjunctions.
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Ties in the heuristic score are broken by computing a tie-breaker score in the
same way over disjunctions in the set of generalised disjunctions G0 (instead of
U0 in the definition of Ω), and any further ties are broken randomly.

After going through the procedure described above once, we end up with
an initial list of propositions that cover at least one conjunction of every un-
generalised (and hence also every generalised) disjunction. Which propositions
should be prioritised after this initial ordering can typically be very different de-
pending on, for each of the propositions that have already been picked, whether
they evaluate to true or false for any given state-action pair (s, a). This is be-
cause, whenever a proposition evaluates to false, any conjunction it is a part of
becomes irrelevant. In contrast, whenever a proposition evaluates to true, any
conjunction it is a part of becomes easier to prove, and hence arguably more
important. This suggests that it may be desirable to construct a (binary) tree,
rather than a single list, such that the order in which propositions are evalu-
ated can be conditioned on the values that earlier propositions evaluate to. We
explore this topic in more detail in Subsection 5.6, but in the remainder of this
paper assume that we prefer only a single ordered list.

We make the simple assumption that all propositions picked so far would
evaluate to true (even if that is typically not possible due to mutually exclusive
propositions), and continue consecutive rounds of picking propositions based on
that assumption. This is implemented by removing picked propositions from
all conjunctions that contain them, deleting conjunctions that have a length of
0 after such removals from their disjunctions, and removing disjunctions that
no longer have any conjunctions. After these changes, we re-compute which
disjunctions are generalised or ungeneralised. At this stage, disjunctions are
not split up in only two sets U0 and G0, but potentially many sets Ui and Gi
for i ≥ 0. A set with subscript i contains any disjunctions from which i full
conjunctions have already been removed due to being fully covered. Where we
previously described that we would loop through U0 to pick new propositions,
we now loop through Ui for the minimal i such that Ui 6= ∅. When applying the
heuristic score of Equation 1, all Ui in increasing order of i, followed by all Gi, are
used as tie-breakers in the definition of Ω. Intuitively, we prioritise disjunctions
with fewer fully covered conjunctions over disjunctions with more fully covered
conjunctions, and place more importance on ungeneralised disjunctions than
generalised disjunctions. This complete process is repeated until all propositions
have been picked. Algorithm 4 provides pseudocode of the entire algorithm to
order propositions.

After obtaining a total ordering of the propositions from this process, we
order the feature instantiations such that no instantiation f is ordered before
another instantiation f ′ if f requires a proposition that is ordered after all
propositions required by f ′. In other words, the last-ordered proposition of an
instantiation determines the ordering of that instantiation. This lets us use Al-
gorithm 2—which is based on looping through an ordered list of instantiations—
while still ensuring that the propositions are evaluated in approximately the
order that they were sorted in.

32



Symbol(s) Definition

f , f ′ Feature instantiations.
φ(f) Feature of which f is an instantiation.
D, D′ Disjunction (of conjunctions of propositions).
|D| Cardinality (number of conjunctions) of a disjunction D.
C(D) Set of conjunctions in the disjunction D.
C, C ′ Conjunction of propositions.
|C| Cardinality (number of propositions) of a conjunction C.
c ∈ C One of the propositions of a conjunction C.
c ∈ C(D) One of the propositions of any one of the conjunctions in C(D).
U0 Set of ungeneralised disjunctions from which no conjunctions

have been fully removed yet.
G0 Set of generalised disjunctions from which no conjunctions have

been fully removed yet.
Ui Set of ungeneralised disjunctions from which i conjunctions have

been fully removed already.
Gi Set of generalised disjunctions from which i conjunctions have

been fully removed already.
U ij Subset of Uj containing only disjunctions that contain i con-

junctions.
P Set of propositions that have already been picked.
Ω Set of all conjunctions C ′ such that C ′ is a part of some disjunc-

tionD′ that, in turn, is part of a set U ji with the minimum i such
that Ui 6= ∅, such that D′ is not covered by any propositions
picked in P .

Ωc Subset of conjunctions C in Ω that contain c as one of their
propositions.

Table 2: Listing of symbols and definitions used throughout Subsubsection 5.5.2.
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Algorithm 4 Order propositions of feature set (see Table 2 for definitions of
symbols).
Require: Initial set of ungeneralised disjunctions U0

Require: Initial set of generalised disjunctions G0

1: function OrderPropositions
2: Ui ← ∅ for all i > 0
3: Gi ← ∅ for all i > 0
4: ordered_propositions ← [] // Init as empty list. P is set

representation of list.
5: while at least one Ui 6= ∅ do
6: i← mini such that Ui 6= ∅
7: Partition Ui into subsets U ji of disjunctions with j ≥ 1 conjunctions
8: for j = 1, 2, 3, . . . do
9: for each disjunction D ∈ Uji do

10: if D not already covered by P then
11: c← PickProposition(D, i, j)
12: Append c to ordered_propositions
13: end if
14: end for
15: end for
16: for all i′ do
17: for all disjunctions D in Ui′ or Gi′ do
18: for all conjunctions C ∈ C(D) do
19: Remove all picked propositions P from C
20: if |C| = 0 then
21: Remove C from C(D)
22: end if
23: end for
24: if |D| = 0 then
25: Remove D from Ui′ or Gi′
26: end if
27: end for
28: end for
29: Re-compute all Ui′ and Gi′ // See Table 2.
30: end while
31: return ordered_propositions
32: end function

33: function PickProposition(D, i, j)
34: Compute set of conjunctions Ω from U ji . // See Table 2.
35: Pick c ∈ C(D) that maximises heuristic. // Equation 1 or Equation 2
36: Break ties using U j+1

i ,U j+2
i , . . . ,U1

i+1,U2
i+1, . . . ,G1

0 ,G2
0 , . . . ,G1

1 , . . .
37: return c
38: end function
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5.5.3. Ordering Based on Implications Between Propositions
As a final step, we consider taking into account the implication relationships

between various propositions, as described in Subsection 5.3, when ordering
feature instantiations. Whenever a proposition c is evaluated, it will evaluate to
either true or false, and in either case there can be several other propositions c′
that will be proven (c⇒ c′ or ¬c⇒ c′) or disproven (c⇒ ¬c′ or ¬c⇒ ¬c′). We
avoid making any additional assumptions concerning the marginal likelihoods
for any given proposition to be true or false (which would require game-specific
domain knowledge), instead simply assuming that any proposition is equally
likely to evaluate to either true or false. This means that, when a procedure like
the one described above picks a proposition c to be inserted in the ordered list,
we expect there to be a probability of 0.5 to automatically gain information on
any propositions that are proven or disproven by c being true, and a probability
of 0.5 to automatically gain information on any propositions that are proven or
disproven by c being false.

We incorporate these ideas in the ordering procedure by adapting the heuris-
tic of Equation 1 by adding 50% of the heuristic score of any proposition c′ that
may be proven or disproven by the evaluation of another proposition c, to the
heuristic score of c. More formally, let >(c) denote the set of propositions that
are either proven or disproven when c evaluates to true, and let ⊥(c) denote the
set of propositions that are either proven or disproven when c evaluates to false.
Then we replace the original heuristic of Equation 1 by the updated version in
Equation 2:

c∗ = argmax
c∈C(D)

∑
C′∈Ωc

2−|C
′| +

1

2

∑
c′∈>(c)

 ∑
C′∈Ωc′

2−|C
′|

+
1

2

∑
c′∈⊥(c)

 ∑
C′∈Ωc′

2−|C
′|


(2)

5.6. Discussion
In Subsubsection 5.5.2, we remarked that in theory, it may be preferably to

order propositions in a binary tree rather than a list, such that the order in
which later propositions are evaluated can be conditional on the truth values
that earlier propositions evaluate to. If an earlier proposition evaluates to false,
any conjunction it is a part of is immediately disproven and therefore becomes
irrelevant, which should in turn deprioritise any other propositions in the same
conjunctions. Conversely, if an earlier proposition evaluates to true, any con-
junctions it is a part of are closer to being proven, which should raise the priority
level of other propositions in those conjunctions.

Intuitively, this also happens when MOMS heuristics are used to select vari-
ables to focus on next in a backtracking search for SAT problems. During
a backtracking search, truth values are assigned to selected variables, and the
heuristics are used “online” (during the search) to select a single next variable for
that specific part of the search tree—which corresponds to a specific assignment
of truth values to previously-selected variables.

35



The core reason not to consider such an approach further in this paper is
that it would have excessive memory requirements. In contrast to SAT problems
where the selection of variables happens online during a backtracking search, we
deal with an offline preprocessing step of which the result (ordering of propo-
sitions) remains stored in memory for future use (to speed up online feature
evaluations during gameplay). Let K ≥ 0 denote the number of propositions
for a full feature set. A single ordering of these propositions in a list only con-
tains K entries, but an ordering in a binary tree—allowing for later propositions
to be conditioned on truth values of earlier propositions—would have 2K − 1
entries.

6. Experiments

In this section, we describe several experiments used to evaluate the per-
formance of the proposed approach for evaluating active features using SPat-
terNets. In our experiments, we consider the following four approaches for
evaluating active features:

1. Naive: a straightforward, naive approach for evaluating active features,
as described by Algorithm 1. This represents the simplest baseline.

2. Tree: an approach that organises feature instantiations in a tree, such that
more specific instantiations are located below more general instantiations.
When an instantiation evaluates to false, any (more specific) instantiations
below it are skipped. This is similar to the approaches used, for example,
by Levinson & Snyder (1991) and Müller (1991, 1995), although likely
less efficient due to our requirements for a general system that is not
specific to a single game or board geometry. It also bears resemblance to
the DAG-based approach described by Buro (1999). More precisely, this
approach incrementally builds up a tree by inserting feature instantiations
one by one, always inserting any given new instance as a child of whichever
potential parent (generaliser) already has the deepest current position in
the tree. This represents a more advanced baseline.

3. SPatterNet: the main approach proposed in this paper, which organ-
ises propositions and instantiations as described in Subsection 5.5, and
evaluates active features using Algorithm 2.

4. SPatterNet (JIT): A variant of the SPatterNet approach, in which fea-
tures are instantiated in a just-in-time (JIT) manner when needed, rather
than instantiating all features for all possible move keys (as described in
Subsection 5.1) in advance. This can significantly reduce the initialisation
time required before a game can start being played. Not generating in-
stantiations for moves that are never legal in practical play can also reduce
memory usage and the sizes of hash maps, which in turn may be a benefit
in terms of processing speed. Because in some cases it will be necessary to
instantiate features at runtime (while a game is being played), there may
also be a reduction in processing speed.
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All experiments are run using a set of 33 highly varied, distinct games, which we
provide additional details on in Appendix A. All experiments are run using the
Ludii general game system. The source code of Ludii, as well as all the code for
spatial features, is available from https://github.com/Ludeme/Ludii. Version
1.3.1 of Ludii was used for the experiments described in this paper.

The primary measure of performance we focus on is the number of playouts
per second we can run. Playouts are run from the initial game state until termi-
nal game states are reached, by sampling actions uniformly at random (unless
stated otherwise), while computing the active features for every legal action in
every state. For every game, every feature set, and each of the evaluated im-
plementations, we run a separate process with access to two cores of a 2.6GHz
Intel Xeon E5-2690 v3 CPU, and 4096MB allocated to the Java Virtual Ma-
chine (JVM). Playouts are run sequentially, but access to a second core may be
used, for instance, by Java’s garbage collector. Every process uses 60 seconds
of warming up time for the JVM (during which the JIT variant of SPatterNet
can also instantiate features), after which the number of playouts per second is
measured over a duration of 600 seconds.

6.1. Atomic Feature Sets
For cases where it is infeasible or undesirable to exhaustively generate all

patterns or features up to a given size (as commonly done in Go programs),
several approaches have been proposed that start with a smaller set of atomic
features, and gradually grow this by generating more complex features that are
composed of two or more other (atomic, or previously-generated composite) fea-
tures (Buro, 1999; Sturtevant & White, 2007; Skowronski et al., 2009; Soemers
et al., 2019). For our first experiment, we evaluate the performance on such
atomic feature sets.

Using the spatial feature format as described in Subsection 4.3, we define
atomic features to be features that have exactly one requirement for the state
(i.e., one walk with one element such as “must be empty” or “must not be
enemy”), in addition to any specifiers related to actions. We consider several
different atomic feature sets, described as Atomic-M -N for different integer
values M ≥ 1 and N ≥ M . In a set labelled Atomic-M -N , we generate all
such features for any walk restricted to a length of up to M steps, allowing
walks of up to N ≥ M steps for “straight” walks (which only have steps with
rotation values ρ = 0, i.e. no turns). Furthermore, the following rules apply for
generating atomic feature sets:

• Let K denote the largest number of orthogonal connections (including ar-
tificial off-board connections) for any site in a given game. In the vast
majority of games, this number is the same for all sites (due to the preva-
lence of boards based on regular tilings). In all generated walks, we only
consider rotation values that are fractions of K (i.e. ρ = 1

K , ρ = 2
K , . . . ,

ρ = 1).

• Every feature must have at least a from or a to position specified (or
both). In games for which the rules can never generate any moves with a
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Figure 18: Boxplots summarising slowdowns of several feature evaluation implementations on
several different sets of atomic features. Every boxplot summarises 33 data points, from 33
different games. Lower slowdown values are better (with values < 1 being speedups). The
size (number of features) per feature set increases as we go down along the y-axis.

distinct from position, no features with from or last_from specifiers are
generated.

• For any generated feature, either the from or the to position (or both)
must have a walk of length 0, causing it to overlap with the anchor.

• In 2-player games with only one piece type per player (Hex, Go, Tic-
Tac-Toe, etc.), no features are generated with elements testing for piece
types—only testing for friend or enemy is sufficient in these games.

6.1.1. Results
The raw number of playouts per second varies significantly between different

games, which means that the effect of evaluating features on those playout rates
cannot be directly compared or averaged across games. To present aggregate
results, we take the number of playouts per second for the smallest feature
set—Atomic-1-1—with the simplest feature evaluation approach—Naive—as a
baseline b per game. For every other pair of feature set and feature evaluation
approach, for every game, we compute the slowdown by dividing the per-game
baseline b by that pair’s raw number of playouts per second. Larger values
indicate a greater slowdown (relative to Naive with the smallest Atomic-1-1
feature set) as a result of using a specific combination of a feature set and
feature evaluation approach. Values below 1.0 are speedups.

The boxplots in Figure 18 summarise these results, with every boxplot—
one for every possible pair of an atomic feature set and a feature evaluation
approach—representing 33 data points for 33 different games. Every atomic
feature set is a strict subset of all the ones below it, which means that feature
sets that appear lower in the figure will always require at least as much work
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to evaluate active features as those that are higher in the figure—and therefore
have greater slowdowns. In every boxplot, the vertical bar represents the median
result (over 33 games), the coloured box covers the interquartile range, and the
whiskers cover any remaining data up to a distance of 1.5 times the interquartile
range below or above the 25th or 75th percentile, respectively. Data points
outside of the whiskers are visualised individually as diamonds.

For each of the 33 games, and for each of the atomic feature sets, we rank the
four feature evaluation approaches based on their performance for that specific
game and atomic feature set. This means that, for each atomic feature set, we
distribute ranks ranging from 1 (best) to 4 (worst) among the four evaluated
approaches 33 times. For each approach, on each feature set, the frequency per
rank (number of times—out of 33—that a certain rank was assigned) is listed
in Table 3.

6.1.2. Discussion
The boxplots of Figure 18 consistently show, across all considered feature

sets, that both variants of SPatterNet are the two most efficient implementations
in terms of aggregate results such as the median slowdowns (or speedups), the
most extreme outliers, etc. The advantage of the SPatterNet approaches over
the other two approaches arguably becomes more pronounced as the size of the
feature sets increases.

Interestingly, the Tree approach appears to be outperformed by the Naive
approach, in particular on the smallest feature sets, even though the Tree ap-
proach is meant to be an optimisation based on generalisation relationships
between feature instantiations. We remark that in atomic feature sets, there
are generally relatively few features or feature instantiations that actually gen-
eralise others; by design the atomic features are meant to be mostly independent
features with little overlap. This is particularly true for the smallest sets; in the
larger atomic feature sets, which allow for longer walks, it is more likely that mul-
tiple different walks (including some turns) will have overlapping destinations.
Therefore, in the smaller atomic feature sets, the Tree approach is slower than
the Naive approach, because its generalisation-based optimisation is ineffective,
but it still has a more complex implementation with additional overhead. In
the larger atomic feature sets, it appears that this optimisation becomes closer
to worthwhile. The SPatterNet approaches include similar generalisation-based
optimisations (which are ineffective in small atomic feature sets), but also other
optimisations that can already pay off for smaller feature sets.

The per-game comparisons summarised by Table 3 lead to similar conclu-
sions. The two SPatterNet approaches already share the top 2 ranks in the
majority of games even for the smallest atomic feature set, and in the largest
feature sets they entirely dominate the top 2 ranks. Furthermore, neither of
them has the worst performance (rank 4) in any case. Between the two SPat-
terNet approaches, the results in the table suggest that the standard variant
may perform better for smaller feature sets, whereas the JIT variant may per-
form better for larger feature sets. However, considering the results depicted by
Figure 18, such differences are unlikely to be large in magnitude.
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Frequency per Rank

Rank 1 Rank 2 Rank 3 Rank 4

Atomic-1-1
Naive 8 6 19 0
Tree 0 0 0 33
SPatterNet 21 6 6 0
SPatterNet (JIT) 4 21 8 0

Atomic-1-2
Naive 1 3 28 1
Tree 0 0 1 32
SPatterNet 19 12 2 0
SPatterNet (JIT) 13 18 2 0

Atomic-2-2
Naive 0 3 23 7
Tree 0 0 7 26
SPatterNet 19 12 2 0
SPatterNet (JIT) 14 18 1 0

Atomic-2-3
Naive 0 0 27 6
Tree 0 0 6 27
SPatterNet 18 15 0 0
SPatterNet (JIT) 15 18 0 0

Atomic-2-4
Naive 0 0 24 9
Tree 0 0 9 24
SPatterNet 13 20 0 0
SPatterNet (JIT) 20 13 0 0

Table 3: For each of the 33 games, and for every feature set, we rank the four feature evaluation
approaches based on their performance. This table lists, for every feature set, how often
each rank was obtained by every feature evaluation approach, where a rank of 1 means best
performance and a rank of 4 means worst performance in a given game.
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6.2. Trained Feature Sets
In our next experiment, we move on to benchmarking larger, trained feature

sets which include non-atomic composite features that have been discovered to
be potentially useful in a training process. In each game, we start out with
its Atomic-2-4 feature set—the largest of the atomic feature sets evaluated in
the previous experiment. We interleave (Utgoff & Precup, 1998; Soemers et al.,
2019) policy training and feature discovery (the addition of new features) in a
self-play training setup between MCTS agents that are guided by the trained
policy (Anthony et al., 2017; Silver et al., 2017), where the policy uses the
features as input. For every game, we run such a training process for up to 200
episodes, or up to 24 hours. After every self-play episode, we attempt to add one
proactive and one reactive feature to the feature set, by combining two existing
feature instantiations into a new composite feature (Soemers et al., 2019). This
means that, in comparison to the Atomic-2-4 sets, each of our feature sets grows
by up to 400 features (of which 200 proactive and 200 reactive). More detailed
information on this training setup is provided in Appendix B.

After such a training run for a game, we do not only have a new, larger
feature set, but also a trained policy π which can, for any given state-action pair
(s, a), provide a probability 0 ≤ π(s, a) ≤ 1 with which the action a should be
selected in state s. For each of the large, trained feature sets, we benchmark the
number of playouts per second for every game two times; once by still sampling
actions uniformly (evaluating active features solely for the sake of benchmarking
performance), and once by sampling actions according to the trained policy π.

6.2.1. Results
Figure 19 depicts boxplots that summarise the slowdowns resulting from the

trained feature sets. Note that we still use the same baseline—the playouts
per second from the Naive approach on the smallest atomic feature set—as in
Figure 18 to compute the relative slowdowns. Table 4 lists for each approach
how often, out of 33 games, it achieved each of the ranks ranging from 1 (best)
to 4 (worst).

6.2.2. Discussion
Both Figure 19 and Table 4 show continuations of the trends discussed in

Subsubsection 6.1.2. The two variants of SPatterNets outperform the others in
terms of aggregate results, as well as dominating the top 2 ranks across all 33
games. There also appears to be a more pronounced advantage for the JIT vari-
ant over the standard variant of SPatterNet in the trained feature sets. The Tree
approach appears to more convincingly outperform the Naive approach (espe-
cially in Table 4) than it does in the atomic feature sets. Its generalisation-based
optimisation is significantly more effective in the trained feature sets, because
every new feature that is added during the training process is a composite of—
and therefore generalised by—at least two other feature instantiations.

We do not observe any major differences in these trends between the results
gathered from uniformly random playouts, and playouts where actions are sam-
pled from trained policies. On average playouts appear to run more quickly
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Figure 19: Boxplots summarising slowdowns of several feature evaluation implementations on
large, trained feature sets; once where actions are sampled uniformly at random, and once
where actions are sampled according to a trained policy. Every boxplot summarises 33 data
points, from 33 different games. Lower slowdown values are better (with values < 1 being
speedups—the dashed vertical line indicates this point).

Frequency per Rank

Rank 1 Rank 2 Rank 3 Rank 4

Uniform Action Sampling
Naive 0 0 5 28
Tree 0 0 28 5
SPatterNet 3 30 0 0
SPatterNet (JIT) 30 3 0 0

Trained Policy Action Sampling
Naive 0 0 6 27
Tree 0 0 27 6
SPatterNet 9 24 0 0
SPatterNet (JIT) 24 9 0 0

Table 4: For each of the 33 games, and for both uniform action sampling as well as action
sampling from a trained policy, we rank the four feature evaluation approaches based on their
performance. This table lists how often each rank was obtained by every feature evaluation
approach, where a rank of 1 means best performance and a rank of 4 means worst performance
in a given game.
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when actions are sampled from the trained policy, but there are also games
where they are slower. These differences are observed regardless of which im-
plementation is used for evaluating active features, and are due to overall more
“intelligent” action selection—which in many games causes playouts to have a
shorter duration in terms of the average number of actions per playout.

6.3. Playing Strength of MCTS with Trained Policies
The purpose of the final experiment for this paper is to evaluate the impact

that the improved speed of SPatterNet over the baselines has in terms of the
playing strength of MCTS agents that are guided by trained policies. Taking
the same trained feature sets as used in Subsection 6.2, a separate MCTS agent
is constructed for each of the four feature evaluation approaches under con-
sideration (Naive, Tree, SPatterNet, and SPatterNet (JIT)). Except for using
different approaches to evaluate features, these four agents are identical. The
rest of the setup of the biased MCTS agents is as described in Appendix B for
the agents used during self-play training, with the only exception being that, in
evaluation games—as opposed to training games—the agents pick actions that
maximise visit counts, rather than proportionally to visit counts. For each of
the six possible pairings of four such agents (excluding mirror matchups, ex-
cluding pairings that are permutations of other pairings), 100 evaluation games
were played between the two agents, in each of the 30 two-player games also
used in previous experiments (excluding three games for more than two players).
The three games for more than two players are excluded from this experiment,
because they require a significantly larger amount of computation resource for
appropriate statistical analyses. This is due to the large number of possible
permutations of agent assignments to player roles in games with more than two
roles.

6.3.1. Results
Figure 20 depicts performance profiles (Agarwal et al., 2021) for the MCTS

agents using different approaches for their feature evaluations. A datapoint at
(x, y) in the plot means that an agent achieved a winrate (averaged over the
four possible opponents, including mirror matchups) greater than or equal to x
on a fraction equal to y out of the thirty games. The shaded intervals depict
95% bootstrap confidence intervals from 2000 replicates, indicating variability
in results over the four different opponents for every agent.

Figure 21 depicts probabilities of improvement for four different pairs of
agents. For each of the pairs (rows), it provides the probability that the ap-
proach on the left-hand side improves upon the approach on the right-hand side
on any given individual game from the set of thirty games, using the imple-
mentation from the rliable framework (Agarwal et al., 2021), which uses the
Mann-Whitney U-statistic (Mann & Whitney, 1947). Confidence intervals are
based on 2000 bootstrap replications.

Table 5 lists 95% confidence intervals for the median, interquartile mean
(IQM), and mean win rates of the four evaluated algorithms, each against the
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Figure 20: Performance profiles (Agarwal et al., 2021) for MCTS agents biased by trained
features, with different approaches for evaluating features.

three other algorithms over the 30 different games. Note that the point esti-
mates for the means and medians correspond to the areas under the curves and
the points of intersection with the horizontal y = 0.5 line, respectively, of the
performance profiles in Figure 20.

6.3.2. Discussion
The performance profiles of Figure 20 show both variants of SPatterNet

(the regular and the JIT variant) stochastically dominating (Levy, 1992; Dror
et al., 2019) both of the baselines (with their plots not being below either of
the baselines for any point τ), which is a clear sign of them providing consis-
tently higher levels of performance. Figure 21 similarly shows the SPatterNet
approach outperforming both of the baselines by statistically significant mar-
gins (with the Tree baseline itself also significantly outperforming the Naive
baseline). While the standard variant of the SpatterNet approach appears to
possibly slightly outperform the JIT variant in the performance profiles, this
is not by a significant margin, and also cannot be concluded from the pairwise
comparison in Figure 21. In the latter figure, with the upper thresholds of the
confidence intervals exceeding 0.75 for all three of the bottom rows, these re-
sults are also statistically meaningful following the threshold recommended by
Bouthillier et al. (2021). The results in Table 5 lead to similar conclusions.
For both SPatterNet and SPatterNet (JIT), even the lower bounds of all three
aggregate metrics exceed the corresponding upper bounds for the two baseline
algorithms, demonstrating statistically significant levels of improvement.
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Figure 21: Pairwise probabilities of improvement (Agarwal et al., 2021) for algorithms on the
left-hand side to outperform algorithms on the right-hand side.

Win rate against all other algorithms

Algorithm Median IQM Mean

Naive [0.35, 0.41] [0.37, 0.41] [0.35, 0.38]
Tree [0.45, 0.49] [0.44, 0.48] [0.43, 0.48]
SPatterNet [0.56, 0.61] [0.55, 0.60] [0.58, 0.62]
SPatterNet (JIT) [0.54, 0.59] [0.54, 0.58] [0.57, 0.60]

Table 5: 95% bootstrap confidence intervals for median, interquartile mean (IQM), and mean
win rates (stratified across 30 games) of MCTS agents biased by trained features, with different
approaches for evaluating features.

7. Applications Beyond Games

The focus in this paper was on efficiently evaluating patterns of spatial state-
action features for game playing as an application domain. However, the SPat-
terNet approach developed for this purpose applies to a highly general and
abstract formulation of the problem, where we simply aim to optimise the order
in which propositions of logical formulas in disjunctive normal form are evalu-
ated. This problem formulation, and hence also the SPatterNet approach, may
be applicable to other types of features than spatial ones, or other types of
problems than game playing.

For example, potential other applications may include classification domains
with costly features, such as medical, fraud detection, or computer security do-
mains, where feature values can be costly to obtain (Mannino & Mookerjee,
1999; Trapeznikov & Saligrama, 2013; Janisch et al., 2020). In such domains,
sets of learned decision rules may be thought of as logical formulas in disjunc-
tive normal form, where every conjunction corresponds to a single rule, and a
disjunction is formed by a set of different rules that have the same output class
(Mannino & Mookerjee, 1999).
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Aside from sets of decision rules, models such as Decision Trees or Random
Forests also lend themselves naturally towards being translated into disjunctive
normal form. Such models have also been used in settings with costly features
(Nan et al., 2015, 2016). In a Decision Tree, every path from the root to a leaf
may be viewed as a conjunction, and sets of paths leading to different leaves with
the same output class can be viewed as disjunctions of conjunctions. While the
optimal order in which to evaluate propositions would likely closely correspond
to the order in which they appear in a Decision Tree, it may deviate if there are
implication relationships between propositions, and propositions that appear
in multiple subtrees below a shared ancestor. For Random Forests with, for
example, a majority voting rule, an efficient ordering for propositions may also
differ from the order dictated by any single individual tree of the forest.

8. Conclusion

In previous work, we proposed an initial design and formalisation of spatial
features for general games (Browne et al., 2019a) in the Ludii general game
system, and demonstrated that they can be used to train simple policies that
effectively improve playing strength in a variety of different games from self-
play using few resources (Soemers et al., 2019, 2020). However, whether or not
such policies substantially improve playing strength also depends greatly on the
amount of computational overhead associated with feature evaluations (Soe-
mers et al., 2019). This paper has two core contributions. Firstly, we extend
the design and formalisation of the spatial features from previous work, and pro-
vide significantly more detail on several implementation and design decisions.
Combined with the publicly available source code, this should aid replicability.
Secondly, we propose a new approach to significantly improve the efficiency of
evaluating active features, reducing the computational overhead when using fea-
tures to, for instance, guide a tree search. An empirical evaluation demonstrates
the improvements in efficiency, and also shows that this significantly improves
the playing strength of agents using the features to guide their search.

Within the domain of AI for games, one idea for future research is transfer
learning of policies based on spatial state-action features between games. The
features have been designed to facilitate this—for instance by formalising the
walks used to define relative positions in such a way that their semantics remain
similar when transferred to different board geometries—but this has yet to be
evaluated. Another idea for future research would be a further extension of
the feature formalisation, to include additional types of elements that may be
important for categories of games that are not yet well-supported. For example,
games with hidden information would likely benefit from an extended format
where features can specify that certain positions should be hidden, and games
where pieces can stack up on top of each other would benefit from adjustments
to take such a third “spatial dimension” into account. These are some of the
same categories of games that Soemers et al. (2022) also identified as having
received little attention in research based on deep learning approaches.
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While we focused on applications for game AI in this paper, we remark that
the proposed SPatterNet approach for organising propositions and determining
the order in which they should be evaluated is not necessarily restricted to
game AI. A similar approach may more generally be applicable to any domain
where sets of disjunctions of conjunctions need to be evaluated efficiently, in
particular when there are generalisation relationships or implications (based on
domain knowledge) between them that the SPatterNet approach can leverage.
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Appendix A. Games Used for Experiments

This appendix provides additional detail on all the games (a total of 33 dis-
tinct games) used for experiments described throughout this paper. Table A.6
lists the names of all the selected games, as well as several properties. Fig-
ure A.22 depicts thumbnails of all the games, which provides an impression of
the variety in board shapes and connectivity structures included in the experi-
ments. This selection of games includes:

• Several games that have been commonly used as benchmarks for AI re-
search, such as Arimaa (Syed & Syed, 2003), Chess (Campbell et al., 2002),
Go (Müller, 2002; Silver et al., 2016), and Hex (Cazenave et al., 2020).

• A mix of games where actions primarily involve movement from one site
to another, and games where actions primarily involve placing new pieces
on sites (see Table A.6)—these are significant differences for the spatial
features discussed in this paper.

• Several games with a significant degree of asymmetry (in initial setup of
pieces, piece types, victory conditions, etc.) between different players;
ArdRi, Bizingo, Fox and Geese, and Tablut.

• Two stochastic games: Royal Game of Ur, and XII Scripta.
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• Three games with more than two players: Chinese Checkers, Level Chess,
and Triad.

• A high degree of variety in board shapes and connectivity structures be-
tween sites; see Figure A.22.

For all games, we used the default options (e.g., default board sizes) as
implemented in the Ludii general game system. Detailed information on each
of these games can be found on https://ludii.games/library.php.

Appendix B. Details on Self-Play Training Setup

Like the speed evaluations described in Section 6, every training run (one per
game) ran as a separate process on two cores of a 2.6GHz Intel Xeon E5-2690
v3 CPU, with 4096MB of RAM allocated to the Java Virtual Machine (JVM),
using Java version 8u261. Every training process ran for up to 200 episodes,
or up to 24 hours of wall time. The training process is similar as described in
our previous work (Soemers et al., 2019, 2020), which in turn is largely inspired
by the AlphaGo Zero and Expert Iteration training processes (Anthony et al.,
2017; Silver et al., 2017). Additional details are provided below.

Each training process starts by generating the Atomic-2-4 feature sets for
each of K players in a given K-player game. Self-play experience is generated
by K copies of MCTS agents, which use:

• The same PUCT selection strategy as AlphaGo Zero (Silver et al., 2017),
i.e. traversing the search tree by selecting actions a∗ according to

a∗ = argmax
a

Q̂(s, a) + Cpuctπ(s, a)

√∑
a′ N(s, a′)

1 +N(s, a)
,

where Q̂(s, a) denotes the current estimated value (average backpropa-
gated score) for action a in state s, Cpuct denotes an exploration constant
(set to Cpuct = 2.5), π(s, a) denotes the probability assigned to a in s by
the trained policy, and N(s, a) denotes the number of previous visits to
the node that selecting a in s leads to in the search tree.

• An ε-greedy playout strategy where actions during playouts are sampled
uniformly at random with probability ε = 0.5, and sampled according to
the trained policy π with probability 1− ε = 0.5.

• A straightforward expansion strategy that consists of expanding the tree
by exactly one node per MCTS iteration.

• Values in the range [−1, 1] for backpropagation; losses correspond to a
value of −1, wins to a value of 1, draws to a value of 0, second place in a
6-player game to a value of 1−

(
(2− 1)× 2

6−1

)
= 0.6, etc. Note that this

range of values is twice as big as the [0, 1] range commonly used by other
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Game Primary Action Types Asymmetric Stochastic K

Alquerque Movement × × 2
Amazons Movement & Placement × × 2
ArdRi Movement X × 2
Arimaa Movement × × 2
Ataxx Movement × × 2
Bao Ki Arabu (Zanzibar 1) Placement × × 2
Bizingo Movement X × 2
Breakthrough Movement × × 2
Chess Movement × × 2
Chinese Checkers Movement × × 6
English Draughts Movement × × 2
Fanorona Movement × × 2
Fox and Geese Movement X × 2
Go Placement × × 2
Gomoku Placement × × 2
Gonnect Placement × × 2
Havannah Placement × × 2
Hex Placement × × 2
Kensington Movement × × 2
Knightthrough Placement × × 2
Konane Movement × × 2
Level Chess Movement × × 4
Lines of Action Movement × × 2
Pentalath Placement × × 2
Pretwa Movement × × 2
Reversi Placement × × 2
Royal Game of Ur Movement × X 2
Shobu Movement × × 2
Surakarta Movement × × 2
Tablut Movement X × 2
Triad Movement & Placement × × 3
XII Scripta Movement × X 2
Yavalath Placement × × 2

Table A.6: Various properties of the games used in experiments. In the second column,
“Movement” is listed for games that involve actions with both source and destination positions
(steps, slides, hops, etc.), and “Placement” is listed for games that involve actions with only a
destination position (e.g., placing stones). The final column (K) lists the number of players
per game.
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Figure A.22: Screenshots of games used in experiments, generated by Ludii.
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programs. To compensate for this, we set the Cpuct = 2.5 exploration
constant to a value that is approximately twice as large as the value used
by programs such as AlphaZero (Cpuct slowly shrinking from 1.25) (Silver
et al., 2018) or ELF OpenGo (Cpuct = 1.5) (Tian et al., 2019).

• Value estimates Q̂(s, a) equal to the parent node’s value estimate for nodes
that have no visits (i.e., N(s, a) = 0).

• Tree reuse, meaning that relevant parts of the search tree from previous
search processes (in previous turns) are preserved for subsequent searches
by the same agent (Pepels et al., 2014; Soemers et al., 2016; Santos, 2017).

• In stochastic games, an open-loop approach where nodes (other than the
root node) do not store copies of game states, but only represent and
collect statistics for the trajectories of actions leading up to them from the
root node (Perez et al., 2015). States are re-generated by applying those
sequences of actions to copies of the root state as required in different
MCTS iterations.

Every move, the MCTS agent corresponding to the player to move uses 1 second
of thinking time, after which it selects a move proportionally to the distribution
of visit counts among the children of the root node.

After every full game of self-play, we store collected samples of experience
in replay buffers, where separate replay buffers per player each contain samples
corresponding to game states in which the corresponding player is the player
to move. We use Prioritized Experience Replay (PER) (Schaul et al., 2016;
Soemers et al., 2020), with hyperparameters α = β = 0.5. Each replay buffer
has a maximum capacity of 2500 tuples of experience.

After every action in self-play, we run, for every player, one step of gradient
descent to minimise the cross-entropy loss function (given for a single state s,
representing a tuple of experience)

L(s) =
(
−πmcts(s)> logπ(s)

)
,

where πmcts(s) denotes the probability distribution over actions legal in s pro-
portional to the visit counts resulting from an MCTS search in s, and π(s)
similarly denotes the distribution over actions in the state s for the trained
policy. We use a batch size of N = 30. Tuples of experience are additionally
weighted based on the durations of the episodes from which they originate (Soe-
mers et al., 2020). Weighted importance sampling is used to correct for PER
(partially) and the weighting according to episode durations. Gradient descent
steps are taken using a centered variant of RMSProp (Graves, 2013), with a
base learning rate of 0.005, a momentum of 0.9, a discounting factor of 0.9,
and a constant of 10−8 added to the denominator for stability. Additionally, we
regularise by applying weight decay with λ = 10−6 after every step.

After every game of self-play, we grow every player’s feature set by up to two
features, which are constructed by re-combining two existing feature instances.
We aim to construct new features such that the absolute correlation between
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its activity and the activity of either of its constituents is minimised, while
the absolute correlation between its activity and the cross-entropy loss function
is maximised (Soemers et al., 2019). Correlations for potential candidates are
estimated from batches of size N = 30 sampled uniformly from the replay buffer.
Every time, we generate at most one new proactive feature and one new reactive
feature. Sometimes, either one or both of these may fail if all candidates turn
out to be equivalent to a feature that already exists.
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